3.73 \(\int \sec (c+d x) \sqrt {b \sec (c+d x)} \, dx\)

Optimal. Leaf size=63 \[ \frac {2 \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

[Out]

-2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/2)/
(b*sec(d*x+c))^(1/2)+2*sin(d*x+c)*(b*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {16, 3768, 3771, 2639} \[ \frac {2 \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*Sqrt[b*Sec[c + d*x]],x]

[Out]

(-2*b*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*Sqrt[b*Sec[c + d*x]]*Sin[c +
 d*x])/d

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \sec (c+d x) \sqrt {b \sec (c+d x)} \, dx &=\frac {\int (b \sec (c+d x))^{3/2} \, dx}{b}\\ &=\frac {2 \sqrt {b \sec (c+d x)} \sin (c+d x)}{d}-b \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx\\ &=\frac {2 \sqrt {b \sec (c+d x)} \sin (c+d x)}{d}-\frac {b \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\\ &=-\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sqrt {b \sec (c+d x)} \sin (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 47, normalized size = 0.75 \[ \frac {2 \sqrt {b \sec (c+d x)} \left (\sin (c+d x)-\sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[b*Sec[c + d*x]]*(-(Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]) + Sin[c + d*x]))/d

________________________________________________________________________________________

fricas [F]  time = 0.99, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {b \sec \left (d x + c\right )} \sec \left (d x + c\right ), x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c))*sec(d*x + c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec \left (d x + c\right )} \sec \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c))*sec(d*x + c), x)

________________________________________________________________________________________

maple [C]  time = 0.92, size = 314, normalized size = 4.98 \[ -\frac {2 \sqrt {\frac {b}{\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )\right )^{2} \left (-1+\cos \left (d x +c \right )\right )^{2} \left (i \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}-i \cos \left (d x +c \right ) \sin \left (d x +c \right ) \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+i \sin \left (d x +c \right ) \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-i \sin \left (d x +c \right ) \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\cos \left (d x +c \right )-1\right )}{d \sin \left (d x +c \right )^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(b*sec(d*x+c))^(1/2),x)

[Out]

-2/d*(b/cos(d*x+c))^(1/2)*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(I*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)-I*cos(d*x+c)*sin(d*x+c)*EllipticE
(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+I*sin(d*x+c)*Ellip
ticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-I*sin(d*x+c)*E
llipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+cos(d*x+c)
-1)/sin(d*x+c)^5

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec \left (d x + c\right )} \sec \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c))*sec(d*x + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\sqrt {\frac {b}{\cos \left (c+d\,x\right )}}}{\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b/cos(c + d*x))^(1/2)/cos(c + d*x),x)

[Out]

int((b/cos(c + d*x))^(1/2)/cos(c + d*x), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(b*sec(c + d*x))*sec(c + d*x), x)

________________________________________________________________________________________